Class: Rumale::EvaluationMeasure::AdjustedRandScore
- Inherits:
-
Object
- Object
- Rumale::EvaluationMeasure::AdjustedRandScore
- Includes:
- Base::Evaluator
- Defined in:
- rumale-evaluation_measure/lib/rumale/evaluation_measure/adjusted_rand_score.rb
Overview
AdjustedRandScore is a class that calculates the adjusted rand index.
Reference
-
Vinh, N X., Epps, J., and Bailey, J., “Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance”, J. Machine Learnig Research, Vol. 11, pp.2837–2854, 2010.
Instance Method Summary collapse
-
#score(y_true, y_pred) ⇒ Float
Calculate adjusted rand index.
Instance Method Details
#score(y_true, y_pred) ⇒ Float
Calculate adjusted rand index.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
# File 'rumale-evaluation_measure/lib/rumale/evaluation_measure/adjusted_rand_score.rb', line 25 def score(y_true, y_pred) # initiazlie some variables. n_samples = y_pred.size n_classes = y_true.to_a.uniq.size n_clusters = y_pred.to_a.uniq.size # check special cases. return 1.0 if special_cases?(n_samples, n_classes, n_clusters) # calculate adjusted rand index. table = contingency_table(y_true, y_pred) sum_comb_a = table.sum(axis: 1).to_a.sum { |v| comb_two(v) } sum_comb_b = table.sum(axis: 0).to_a.sum { |v| comb_two(v) } sum_comb = table.flatten.to_a.sum { |v| comb_two(v) } prod_comb = (sum_comb_a * sum_comb_b).fdiv(comb_two(n_samples)) mean_comb = (sum_comb_a + sum_comb_b).fdiv(2) (sum_comb - prod_comb).fdiv(mean_comb - prod_comb) end |