Class: Rumale::EvaluationMeasure::MutualInformation
- Inherits:
-
Object
- Object
- Rumale::EvaluationMeasure::MutualInformation
- Includes:
- Base::Evaluator
- Defined in:
- rumale-evaluation_measure/lib/rumale/evaluation_measure/mutual_information.rb
Overview
MutualInformation is a class that calculates the mutual information.
Reference
-
Vinh, N X., Epps, J., and Bailey, J., “Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance,” J. Machine Learning Research, vol. 11, pp. 2837–1854, 2010.
Instance Method Summary collapse
-
#score(y_true, y_pred) ⇒ Float
Calculate mutual information.
Instance Method Details
#score(y_true, y_pred) ⇒ Float
Calculate mutual information
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
# File 'rumale-evaluation_measure/lib/rumale/evaluation_measure/mutual_information.rb', line 25 def score(y_true, y_pred) # initiazlie some variables. mutual_information = 0.0 n_samples = y_pred.size class_ids = y_true.to_a.uniq cluster_ids = y_pred.to_a.uniq # calculate mutual information. cluster_ids.map do |k| pr_sample_ids = y_pred.eq(k).where.to_a n_pr_samples = pr_sample_ids.size class_ids.map do |j| tr_sample_ids = y_true.eq(j).where.to_a n_tr_samples = tr_sample_ids.size n_intr_samples = (pr_sample_ids & tr_sample_ids).size if n_intr_samples.positive? mutual_information += n_intr_samples.fdiv(n_samples) * Math.log((n_samples * n_intr_samples).fdiv(n_pr_samples * n_tr_samples)) end end end mutual_information end |