Class: Rumale::Decomposition::FastICA
- Inherits:
-
Base::Estimator
- Object
- Base::Estimator
- Rumale::Decomposition::FastICA
- Includes:
- Base::Transformer
- Defined in:
- rumale-decomposition/lib/rumale/decomposition/fast_ica.rb
Overview
FastICA is a class that implments Fast Independent Component Analaysis.
Reference
-
Hyvarinen, A., “Fast and Robust Fixed-Point Algorithms for Independent Component Analysis,” IEEE Trans. Neural Networks, Vol. 10 (3), pp. 626–634, 1999.
-
Hyvarinen, A., and Oja, E., “Independent Component Analysis: Algorithms and Applications,” Neural Networks, Vol. 13 (4-5), pp. 411–430, 2000.
Instance Attribute Summary collapse
-
#components ⇒ Numo::DFloat
readonly
Returns the unmixing matrix.
-
#mixing ⇒ Numo::DFloat
readonly
Returns the mixing matrix.
-
#n_iter ⇒ Integer
readonly
Returns the number of iterations when converged.
-
#rng ⇒ Random
readonly
Return the random generator.
Attributes inherited from Base::Estimator
Instance Method Summary collapse
-
#fit(x) ⇒ FastICA
Fit the model with given training data.
-
#fit_transform(x) ⇒ Numo::DFloat
Fit the model with training data, and then transform them with the learned model.
-
#initialize(n_components: 2, whiten: true, fun: 'logcosh', alpha: 1.0, max_iter: 200, tol: 1e-4, random_seed: nil) ⇒ FastICA
constructor
Create a new transformer with FastICA.
-
#inverse_transform(z) ⇒ Numo::DFloat
Inverse transform the given transformed data with the learned model.
-
#transform(x) ⇒ Numo::DFloat
Transform the given data with the learned model.
Constructor Details
#initialize(n_components: 2, whiten: true, fun: 'logcosh', alpha: 1.0, max_iter: 200, tol: 1e-4, random_seed: nil) ⇒ FastICA
Create a new transformer with FastICA.
51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'rumale-decomposition/lib/rumale/decomposition/fast_ica.rb', line 51 def initialize(n_components: 2, whiten: true, fun: 'logcosh', alpha: 1.0, max_iter: 200, tol: 1e-4, random_seed: nil) super() @params = { n_components: n_components, whiten: whiten, fun: fun, alpha: alpha, max_iter: max_iter, tol: tol, random_seed: random_seed || srand } @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#components ⇒ Numo::DFloat (readonly)
Returns the unmixing matrix.
27 28 29 |
# File 'rumale-decomposition/lib/rumale/decomposition/fast_ica.rb', line 27 def components @components end |
#mixing ⇒ Numo::DFloat (readonly)
Returns the mixing matrix.
31 32 33 |
# File 'rumale-decomposition/lib/rumale/decomposition/fast_ica.rb', line 31 def mixing @mixing end |
#n_iter ⇒ Integer (readonly)
Returns the number of iterations when converged.
35 36 37 |
# File 'rumale-decomposition/lib/rumale/decomposition/fast_ica.rb', line 35 def n_iter @n_iter end |
#rng ⇒ Random (readonly)
Return the random generator.
39 40 41 |
# File 'rumale-decomposition/lib/rumale/decomposition/fast_ica.rb', line 39 def rng @rng end |
Instance Method Details
#fit(x) ⇒ FastICA
Fit the model with given training data.
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
# File 'rumale-decomposition/lib/rumale/decomposition/fast_ica.rb', line 70 def fit(x, _y = nil) x = ::Rumale::Validation.check_convert_sample_array(x) raise 'FastICA#fit requires Numo::Linalg but that is not loaded' unless enable_linalg?(warning: false) @mean, whiten_mat = whitening(x, @params[:n_components]) if @params[:whiten] wx = @params[:whiten] ? (x - @mean).dot(whiten_mat.transpose) : x unmixing, @n_iter = ica(wx, @params[:fun], @params[:max_iter], @params[:tol], @rng.dup) @components = @params[:whiten] ? unmixing.dot(whiten_mat) : unmixing @mixing = Numo::Linalg.pinv(@components).dup if @params[:n_components] == 1 @components = @components.flatten.dup @mixing = @mixing.flatten.dup end self end |
#fit_transform(x) ⇒ Numo::DFloat
Fit the model with training data, and then transform them with the learned model.
91 92 93 94 95 96 |
# File 'rumale-decomposition/lib/rumale/decomposition/fast_ica.rb', line 91 def fit_transform(x, _y = nil) x = ::Rumale::Validation.check_convert_sample_array(x) raise 'FastICA#fit_transform requires Numo::Linalg but that is not loaded' unless enable_linalg?(warning: false) fit(x).transform(x) end |
#inverse_transform(z) ⇒ Numo::DFloat
Inverse transform the given transformed data with the learned model.
113 114 115 116 117 118 119 120 |
# File 'rumale-decomposition/lib/rumale/decomposition/fast_ica.rb', line 113 def inverse_transform(z) z = ::Rumale::Validation.check_convert_sample_array(z) m = @mixing.shape[1].nil? ? @mixing.(0).transpose : @mixing x = z.dot(m.transpose) x += @mean if @params[:whiten] x end |
#transform(x) ⇒ Numo::DFloat
Transform the given data with the learned model.
102 103 104 105 106 107 |
# File 'rumale-decomposition/lib/rumale/decomposition/fast_ica.rb', line 102 def transform(x) x = ::Rumale::Validation.check_convert_sample_array(x) cx = @params[:whiten] ? (x - @mean) : x cx.dot(@components.transpose) end |