Class: Rumale::Base::Estimator
- Inherits:
-
Object
- Object
- Rumale::Base::Estimator
- Defined in:
- rumale-core/lib/rumale/base/estimator.rb
Overview
Base class for all estimators in Rumale.
Direct Known Subclasses
Clustering::DBSCAN, Clustering::GaussianMixture, Clustering::HDBSCAN, Clustering::KMeans, Clustering::KMedoids, Clustering::MeanShift, Clustering::MiniBatchKMeans, Clustering::PowerIteration, Clustering::SingleLinkage, Clustering::SpectralClustering, Decomposition::FactorAnalysis, Decomposition::FastICA, Decomposition::NMF, Decomposition::PCA, Decomposition::SparsePCA, Ensemble::AdaBoostClassifier, Ensemble::AdaBoostRegressor, Ensemble::GradientBoostingClassifier, Ensemble::GradientBoostingRegressor, Ensemble::RandomForestClassifier, Ensemble::RandomForestRegressor, Ensemble::StackingClassifier, Ensemble::StackingRegressor, Ensemble::VotingClassifier, Ensemble::VotingRegressor, FeatureExtraction::FeatureHasher, FeatureExtraction::HashVectorizer, FeatureExtraction::TfidfTransformer, KernelApproximation::Nystroem, KernelApproximation::RBF, KernelMachine::KernelFDA, KernelMachine::KernelPCA, KernelMachine::KernelRidge, KernelMachine::KernelRidgeClassifier, KernelMachine::KernelSVC, LinearModel::BaseEstimator, Manifold::HessianEigenmaps, Manifold::LaplacianEigenmaps, Manifold::LocalTangentSpaceAlignment, Manifold::LocallyLinearEmbedding, Manifold::MDS, Manifold::TSNE, MetricLearning::FisherDiscriminantAnalysis, MetricLearning::LocalFisherDiscriminantAnalysis, MetricLearning::MLKR, MetricLearning::NeighbourhoodComponentAnalysis, ModelSelection::GridSearchCV, NaiveBayes::BaseNaiveBayes, NearestNeighbors::KNeighborsClassifier, NearestNeighbors::KNeighborsRegressor, NeuralNetwork::BaseMLP, NeuralNetwork::BaseRBF, NeuralNetwork::BaseRVFL, Pipeline::FeatureUnion, Pipeline::Pipeline, Preprocessing::BinDiscretizer, Preprocessing::Binarizer, Preprocessing::KernelCalculator, Preprocessing::L1Normalizer, Preprocessing::L2Normalizer, Preprocessing::LabelBinarizer, Preprocessing::LabelEncoder, Preprocessing::MaxAbsScaler, Preprocessing::MaxNormalizer, Preprocessing::MinMaxScaler, Preprocessing::OneHotEncoder, Preprocessing::OrdinalEncoder, Preprocessing::PolynomialFeatures, Preprocessing::StandardScaler, Tree::BaseDecisionTree, Tree::GradientTreeRegressor
Instance Attribute Summary collapse
-
#params ⇒ Hash
readonly
Return parameters about an estimator.
Instance Attribute Details
#params ⇒ Hash (readonly)
Return parameters about an estimator.
12 13 14 |
# File 'rumale-core/lib/rumale/base/estimator.rb', line 12 def params @params end |