Class: Rumale::Ensemble::ExtraTreesClassifier
- Inherits:
-
RandomForestClassifier
- Object
- Base::Estimator
- RandomForestClassifier
- Rumale::Ensemble::ExtraTreesClassifier
- Defined in:
- rumale-ensemble/lib/rumale/ensemble/extra_trees_classifier.rb
Overview
ExtraTreesClassifier is a class that implements extremely randomized trees for classification. The algorithm of extremely randomized trees is similar to random forest. The features of the algorithm of extremely randomized trees are not to apply the bagging procedure and to randomly select the threshold for splitting feature space.
Reference
-
Geurts, P., Ernst, D., and Wehenkel, L., “Extremely randomized trees,” Machine Learning, vol. 63 (1), pp. 3–42, 2006.
Instance Attribute Summary collapse
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#estimators ⇒ Array<ExtraTreeClassifier>
readonly
Return the set of estimators.
-
#feature_importances ⇒ Numo::DFloat
readonly
Return the importance for each feature.
-
#rng ⇒ Random
readonly
Return the random generator for random selection of feature index.
Attributes inherited from Base::Estimator
Instance Method Summary collapse
-
#apply(x) ⇒ Numo::Int32
Return the index of the leaf that each sample reached.
-
#fit(x, y) ⇒ ExtraTreesClassifier
Fit the model with given training data.
-
#initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, n_jobs: nil, random_seed: nil) ⇒ ExtraTreesClassifier
constructor
Create a new classifier with extremely randomized trees.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, n_jobs: nil, random_seed: nil) ⇒ ExtraTreesClassifier
Create a new classifier with extremely randomized trees.
60 61 62 63 64 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_classifier.rb', line 60 def initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, n_jobs: nil, random_seed: nil) super end |
Instance Attribute Details
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
33 34 35 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_classifier.rb', line 33 def classes @classes end |
#estimators ⇒ Array<ExtraTreeClassifier> (readonly)
Return the set of estimators.
29 30 31 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_classifier.rb', line 29 def estimators @estimators end |
#feature_importances ⇒ Numo::DFloat (readonly)
Return the importance for each feature.
37 38 39 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_classifier.rb', line 37 def feature_importances @feature_importances end |
#rng ⇒ Random (readonly)
Return the random generator for random selection of feature index.
41 42 43 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_classifier.rb', line 41 def rng @rng end |
Instance Method Details
#apply(x) ⇒ Numo::Int32
Return the index of the leaf that each sample reached.
123 124 125 126 127 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_classifier.rb', line 123 def apply(x) x = ::Rumale::Validation.check_convert_sample_array(x) super end |
#fit(x, y) ⇒ ExtraTreesClassifier
Fit the model with given training data.
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_classifier.rb', line 71 def fit(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_label_array(y) ::Rumale::Validation.check_sample_size(x, y) # Initialize some variables. n_features = x.shape[1] @params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil? @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp @classes = Numo::Int32.asarray(y.to_a.uniq.sort) sub_rng = @rng.dup # Construct trees. rng_seeds = Array.new(@params[:n_estimators]) { sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) } @estimators = if enable_parallel? parallel_map(@params[:n_estimators]) { |n| plant_tree(rng_seeds[n]).fit(x, y) } else Array.new(@params[:n_estimators]) { |n| plant_tree(rng_seeds[n]).fit(x, y) } end @feature_importances = if enable_parallel? parallel_map(@params[:n_estimators]) { |n| @estimators[n].feature_importances }.sum else @estimators.sum(&:feature_importances) end @feature_importances /= @feature_importances.sum self end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
103 104 105 106 107 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_classifier.rb', line 103 def predict(x) x = ::Rumale::Validation.check_convert_sample_array(x) super end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
113 114 115 116 117 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_classifier.rb', line 113 def predict_proba(x) x = ::Rumale::Validation.check_convert_sample_array(x) super end |