Class: Rumale::Ensemble::ExtraTreesRegressor
- Inherits:
-
RandomForestRegressor
- Object
- Base::Estimator
- RandomForestRegressor
- Rumale::Ensemble::ExtraTreesRegressor
- Defined in:
- rumale-ensemble/lib/rumale/ensemble/extra_trees_regressor.rb
Overview
ExtraTreesRegressor is a class that implements extremely randomized trees for regression The algorithm of extremely randomized trees is similar to random forest. The features of the algorithm of extremely randomized trees are not to apply the bagging procedure and to randomly select the threshold for splitting feature space.
Reference
-
Geurts, P., Ernst, D., and Wehenkel, L., “Extremely randomized trees,” Machine Learning, vol. 63 (1), pp. 3–42, 2006.
Instance Attribute Summary collapse
-
#estimators ⇒ Array<ExtraTreeRegressor>
readonly
Return the set of estimators.
-
#feature_importances ⇒ Numo::DFloat
readonly
Return the importance for each feature.
-
#rng ⇒ Random
readonly
Return the random generator for random selection of feature index.
Attributes inherited from Base::Estimator
Instance Method Summary collapse
-
#apply(x) ⇒ Numo::Int32
Return the index of the leaf that each sample reached.
-
#fit(x, y) ⇒ ExtraTreesRegressor
Fit the model with given training data.
-
#initialize(n_estimators: 10, criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, n_jobs: nil, random_seed: nil) ⇒ ExtraTreesRegressor
constructor
Create a new regressor with extremely randomized trees.
-
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
Methods included from Base::Regressor
Constructor Details
#initialize(n_estimators: 10, criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, n_jobs: nil, random_seed: nil) ⇒ ExtraTreesRegressor
Create a new regressor with extremely randomized trees.
56 57 58 59 60 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_regressor.rb', line 56 def initialize(n_estimators: 10, criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, n_jobs: nil, random_seed: nil) super end |
Instance Attribute Details
#estimators ⇒ Array<ExtraTreeRegressor> (readonly)
Return the set of estimators.
29 30 31 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_regressor.rb', line 29 def estimators @estimators end |
#feature_importances ⇒ Numo::DFloat (readonly)
Return the importance for each feature.
33 34 35 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_regressor.rb', line 33 def feature_importances @feature_importances end |
#rng ⇒ Random (readonly)
Return the random generator for random selection of feature index.
37 38 39 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_regressor.rb', line 37 def rng @rng end |
Instance Method Details
#apply(x) ⇒ Numo::Int32
Return the index of the leaf that each sample reached.
108 109 110 111 112 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_regressor.rb', line 108 def apply(x) x = ::Rumale::Validation.check_convert_sample_array(x) super end |
#fit(x, y) ⇒ ExtraTreesRegressor
Fit the model with given training data.
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_regressor.rb', line 67 def fit(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_target_value_array(y) ::Rumale::Validation.check_sample_size(x, y) # Initialize some variables. n_features = x.shape[1] @params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil? @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp sub_rng = @rng.dup # Construct forest. rng_seeds = Array.new(@params[:n_estimators]) { sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) } @estimators = if enable_parallel? parallel_map(@params[:n_estimators]) { |n| plant_tree(rng_seeds[n]).fit(x, y) } else Array.new(@params[:n_estimators]) { |n| plant_tree(rng_seeds[n]).fit(x, y) } end @feature_importances = if enable_parallel? parallel_map(@params[:n_estimators]) { |n| @estimators[n].feature_importances }.sum else @estimators.sum(&:feature_importances) end @feature_importances /= @feature_importances.sum self end |
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
98 99 100 101 102 |
# File 'rumale-ensemble/lib/rumale/ensemble/extra_trees_regressor.rb', line 98 def predict(x) x = ::Rumale::Validation.check_convert_sample_array(x) super end |