Class: Rumale::KernelMachine::KernelSVC
- Inherits:
-
Base::Estimator
- Object
- Base::Estimator
- Rumale::KernelMachine::KernelSVC
- Includes:
- Base::Classifier
- Defined in:
- rumale-kernel_machine/lib/rumale/kernel_machine/kernel_svc.rb
Overview
Rumale::SVM provides kernel support vector classifier based on LIBSVM. If you prefer execution speed, you should use Rumale::SVM::SVC. github.com/yoshoku/rumale-svm
KernelSVC is a class that implements (Nonlinear) Kernel Support Vector Classifier with stochastic gradient descent (SGD) optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A., “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
Instance Attribute Summary collapse
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Kernel SVC.
Attributes inherited from Base::Estimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ KernelSVC
Fit the model with given training data.
-
#initialize(reg_param: 1.0, max_iter: 1000, probability: false, n_jobs: nil, random_seed: nil) ⇒ KernelSVC
constructor
Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, max_iter: 1000, probability: false, n_jobs: nil, random_seed: nil) ⇒ KernelSVC
Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
57 58 59 60 61 62 63 64 65 66 67 |
# File 'rumale-kernel_machine/lib/rumale/kernel_machine/kernel_svc.rb', line 57 def initialize(reg_param: 1.0, max_iter: 1000, probability: false, n_jobs: nil, random_seed: nil) super() @params = { reg_param: reg_param, max_iter: max_iter, probability: probability, n_jobs: n_jobs, random_seed: random_seed || srand } @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
41 42 43 |
# File 'rumale-kernel_machine/lib/rumale/kernel_machine/kernel_svc.rb', line 41 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
45 46 47 |
# File 'rumale-kernel_machine/lib/rumale/kernel_machine/kernel_svc.rb', line 45 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Kernel SVC.
37 38 39 |
# File 'rumale-kernel_machine/lib/rumale/kernel_machine/kernel_svc.rb', line 37 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
113 114 115 116 117 |
# File 'rumale-kernel_machine/lib/rumale/kernel_machine/kernel_svc.rb', line 113 def decision_function(x) x = ::Rumale::Validation.check_convert_sample_array(x) x.dot(@weight_vec.transpose) end |
#fit(x, y) ⇒ KernelSVC
Fit the model with given training data.
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
# File 'rumale-kernel_machine/lib/rumale/kernel_machine/kernel_svc.rb', line 75 def fit(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_label_array(y) ::Rumale::Validation.check_sample_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size n_features = x.shape[1] if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @prob_param = Numo::DFloat.zeros(n_classes, 2) models = if enable_parallel? parallel_map(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end else Array.new(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end end models.each_with_index { |model, n| @weight_vec[n, true], @prob_param[n, true] = model } else negative_label = y.to_a.uniq.min bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @prob_param = partial_fit(x, bin_y) end self end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# File 'rumale-kernel_machine/lib/rumale/kernel_machine/kernel_svc.rb', line 124 def predict(x) x = ::Rumale::Validation.check_convert_sample_array(x) return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = decision_function(x) predicted = if enable_parallel? parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] } else Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] } end Numo::Int32.asarray(predicted) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# File 'rumale-kernel_machine/lib/rumale/kernel_machine/kernel_svc.rb', line 144 def predict_proba(x) x = ::Rumale::Validation.check_convert_sample_array(x) if @classes.size > 2 probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0) return (probs.transpose / probs.sum(axis: 1)).transpose.dup end n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0) probs[true, 0] = 1.0 - probs[true, 1] probs end |