Class: Rumale::MetricLearning::MLKR
- Inherits:
- 
      Base::Estimator
      
        - Object
- Base::Estimator
- Rumale::MetricLearning::MLKR
 
- Includes:
- Base::Transformer
- Defined in:
- rumale-metric_learning/lib/rumale/metric_learning/mlkr.rb
Overview
MLKR is a class that implements Metric Learning for Kernel Regression.
Reference
- 
Weinberger, K. Q. and Tesauro, G., “Metric Learning for Kernel Regression,” Proc. AISTATS’07, pp. 612–629, 2007. 
Instance Attribute Summary collapse
- 
  
    
      #components  ⇒ Numo::DFloat 
    
    
  
  
  
  
    
      readonly
    
    
  
  
  
  
  
  
    Returns the metric components. 
- 
  
    
      #n_iter  ⇒ Integer 
    
    
  
  
  
  
    
      readonly
    
    
  
  
  
  
  
  
    Return the number of iterations run for optimization. 
- 
  
    
      #rng  ⇒ Random 
    
    
  
  
  
  
    
      readonly
    
    
  
  
  
  
  
  
    Return the random generator. 
Attributes inherited from Base::Estimator
Instance Method Summary collapse
- 
  
    
      #fit(x, y)  ⇒ MLKR 
    
    
  
  
  
  
  
  
  
  
  
    Fit the model with given training data. 
- 
  
    
      #fit_transform(x, y)  ⇒ Numo::DFloat 
    
    
  
  
  
  
  
  
  
  
  
    Fit the model with training data, and then transform them with the learned model. 
- 
  
    
      #initialize(n_components: nil, init: 'random', max_iter: 100, tol: 1e-6, verbose: false, random_seed: nil)  ⇒ MLKR 
    
    
  
  
  
    constructor
  
  
  
  
  
  
  
    Create a new transformer with MLKR. 
- 
  
    
      #transform(x)  ⇒ Numo::DFloat 
    
    
  
  
  
  
  
  
  
  
  
    Transform the given data with the learned model. 
Constructor Details
#initialize(n_components: nil, init: 'random', max_iter: 100, tol: 1e-6, verbose: false, random_seed: nil) ⇒ MLKR
Create a new transformer with MLKR.
| 50 51 52 53 54 55 56 57 58 59 60 61 | # File 'rumale-metric_learning/lib/rumale/metric_learning/mlkr.rb', line 50 def initialize(n_components: nil, init: 'random', max_iter: 100, tol: 1e-6, verbose: false, random_seed: nil) super() @params = { n_components: n_components, init: init, max_iter: max_iter, tol: tol, verbose: verbose, random_seed: random_seed || srand } @rng = Random.new(@params[:random_seed]) end | 
Instance Attribute Details
#components ⇒ Numo::DFloat (readonly)
Returns the metric components.
| 30 31 32 | # File 'rumale-metric_learning/lib/rumale/metric_learning/mlkr.rb', line 30 def components @components end | 
#n_iter ⇒ Integer (readonly)
Return the number of iterations run for optimization
| 34 35 36 | # File 'rumale-metric_learning/lib/rumale/metric_learning/mlkr.rb', line 34 def n_iter @n_iter end | 
#rng ⇒ Random (readonly)
Return the random generator.
| 38 39 40 | # File 'rumale-metric_learning/lib/rumale/metric_learning/mlkr.rb', line 38 def rng @rng end | 
Instance Method Details
#fit(x, y) ⇒ MLKR
Fit the model with given training data.
| 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | # File 'rumale-metric_learning/lib/rumale/metric_learning/mlkr.rb', line 68 def fit(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_target_value_array(y) ::Rumale::Validation.check_sample_size(x, y) n_features = x.shape[1] n_components = if @params[:n_components].nil? n_features else [n_features, @params[:n_components]].min end @components, @n_iter = optimize_components(x, y, n_features, n_components) @prototypes = x.dot(@components.transpose) @values = y self end | 
#fit_transform(x, y) ⇒ Numo::DFloat
Fit the model with training data, and then transform them with the learned model.
| 90 91 92 93 94 95 96 | # File 'rumale-metric_learning/lib/rumale/metric_learning/mlkr.rb', line 90 def fit_transform(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_target_value_array(y) ::Rumale::Validation.check_sample_size(x, y) fit(x, y).transform(x) end | 
#transform(x) ⇒ Numo::DFloat
Transform the given data with the learned model.
| 102 103 104 105 106 | # File 'rumale-metric_learning/lib/rumale/metric_learning/mlkr.rb', line 102 def transform(x) x = ::Rumale::Validation.check_convert_sample_array(x) x.dot(@components.transpose) end |