Class: Rumale::NaiveBayes::MultinomialNB
- Inherits:
-
BaseNaiveBayes
- Object
- Base::Estimator
- BaseNaiveBayes
- Rumale::NaiveBayes::MultinomialNB
- Defined in:
- rumale-naive_bayes/lib/rumale/naive_bayes/multinomial_nb.rb
Overview
MultinomialNB is a class that implements Multinomial Naive Bayes classifier.
Reference
-
Manning, C D., Raghavan, P., and Schutze, H., “Introduction to Information Retrieval,” Cambridge University Press., 2008.
Instance Attribute Summary collapse
-
#class_priors ⇒ Numo::DFloat
readonly
Return the prior probabilities of the classes.
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#feature_probs ⇒ Numo::DFloat
readonly
Return the conditional probabilities for features of each class.
Attributes inherited from Base::Estimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ MultinomialNB
Fit the model with given training data.
-
#initialize(smoothing_param: 1.0) ⇒ MultinomialNB
constructor
Create a new classifier with Multinomial Naive Bayes.
Methods inherited from BaseNaiveBayes
#predict, #predict_log_proba, #predict_proba
Methods included from Base::Classifier
Constructor Details
#initialize(smoothing_param: 1.0) ⇒ MultinomialNB
Create a new classifier with Multinomial Naive Bayes.
34 35 36 37 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/multinomial_nb.rb', line 34 def initialize(smoothing_param: 1.0) super() @params = { smoothing_param: smoothing_param } end |
Instance Attribute Details
#class_priors ⇒ Numo::DFloat (readonly)
Return the prior probabilities of the classes.
25 26 27 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/multinomial_nb.rb', line 25 def class_priors @class_priors end |
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
21 22 23 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/multinomial_nb.rb', line 21 def classes @classes end |
#feature_probs ⇒ Numo::DFloat (readonly)
Return the conditional probabilities for features of each class.
29 30 31 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/multinomial_nb.rb', line 29 def feature_probs @feature_probs end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
64 65 66 67 68 69 70 71 72 73 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/multinomial_nb.rb', line 64 def decision_function(x) x = ::Rumale::Validation.check_convert_sample_array(x) n_classes = @classes.size bin_x = x.gt(0) log_likelihoods = Array.new(n_classes) do |l| Math.log(@class_priors[l]) + (Numo::DFloat[*bin_x] * Numo::NMath.log(@feature_probs[l, true])).sum(axis: 1) end Numo::DFloat[*log_likelihoods].transpose.dup end |
#fit(x, y) ⇒ MultinomialNB
Fit the model with given training data.
45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/multinomial_nb.rb', line 45 def fit(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_label_array(y) ::Rumale::Validation.check_sample_size(x, y) n_samples, = x.shape @classes = Numo::Int32[*y.to_a.uniq.sort] @class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count / n_samples.to_f }] count_features = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].sum(axis: 0) }] count_features += @params[:smoothing_param] n_classes = @classes.size @feature_probs = count_features / count_features.sum(axis: 1).reshape(n_classes, 1) self end |