Class: Rumale::NaiveBayes::NegationNB
- Inherits:
-
BaseNaiveBayes
- Object
- Base::Estimator
- BaseNaiveBayes
- Rumale::NaiveBayes::NegationNB
- Defined in:
- rumale-naive_bayes/lib/rumale/naive_bayes/negation_nb.rb
Overview
NegationNB is a class that implements Negation Naive Bayes classifier.
Reference
-
Komiya, K., Sato, N., Fujimoto, K., and Kotani, Y., “Negation Naive Bayes for Categorization of Product Pages on the Web,” RANLP’ 11, pp. 586–592, 2011.
Instance Attribute Summary collapse
-
#class_priors ⇒ Numo::DFloat
readonly
Return the prior probabilities of the classes.
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#feature_probs ⇒ Numo::DFloat
readonly
Return the conditional probabilities for features of each class.
Attributes inherited from Base::Estimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ ComplementNB
Fit the model with given training data.
-
#initialize(smoothing_param: 1.0) ⇒ NegationNB
constructor
Create a new classifier with Complement Naive Bayes.
Methods inherited from BaseNaiveBayes
#predict, #predict_log_proba, #predict_proba
Methods included from Base::Classifier
Constructor Details
#initialize(smoothing_param: 1.0) ⇒ NegationNB
Create a new classifier with Complement Naive Bayes.
34 35 36 37 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/negation_nb.rb', line 34 def initialize(smoothing_param: 1.0) super() @params = { smoothing_param: smoothing_param } end |
Instance Attribute Details
#class_priors ⇒ Numo::DFloat (readonly)
Return the prior probabilities of the classes.
25 26 27 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/negation_nb.rb', line 25 def class_priors @class_priors end |
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
21 22 23 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/negation_nb.rb', line 21 def classes @classes end |
#feature_probs ⇒ Numo::DFloat (readonly)
Return the conditional probabilities for features of each class.
29 30 31 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/negation_nb.rb', line 29 def feature_probs @feature_probs end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
66 67 68 69 70 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/negation_nb.rb', line 66 def decision_function(x) x = ::Rumale::Validation.check_convert_sample_array(x) @class_log_probs - x.dot(@weights.transpose) end |
#fit(x, y) ⇒ ComplementNB
Fit the model with given training data.
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'rumale-naive_bayes/lib/rumale/naive_bayes/negation_nb.rb', line 45 def fit(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_label_array(y) ::Rumale::Validation.check_sample_size(x, y) n_samples, = x.shape @classes = Numo::Int32[*y.to_a.uniq.sort] @class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count.fdiv(n_samples) }] @class_log_probs = Numo::NMath.log(1 / (1 - @class_priors)) compl_features = Numo::DFloat[*@classes.to_a.map { |l| x[y.ne(l).where, true].sum(axis: 0) }] compl_features += @params[:smoothing_param] n_classes = @classes.size @feature_probs = compl_features / compl_features.sum(axis: 1).reshape(n_classes, 1) @weights = Numo::NMath.log(@feature_probs) self end |