Class: Rumale::NeuralNetwork::BaseRBF
- Inherits:
-
Base::Estimator
- Object
- Base::Estimator
- Rumale::NeuralNetwork::BaseRBF
- Defined in:
- rumale-neural_network/lib/rumale/neural_network/base_rbf.rb
Overview
BaseRBF is an abstract class for implementation of radial basis function (RBF) network estimator. This class is used internally.
Reference
-
Bugmann, G., “Normalized Gaussian Radial Basis Function networks,” Neural Computation, vol. 20, pp. 97–110, 1998.
-
Que, Q., and Belkin, M., “Back to the Future: Radial Basis Function Networks Revisited,” Proc. of AISTATS’16, pp. 1375–1383, 2016.
Direct Known Subclasses
Instance Attribute Summary
Attributes inherited from Base::Estimator
Instance Method Summary collapse
-
#initialize(hidden_units: 128, gamma: nil, reg_param: 100.0, normalize: false, max_iter: 50, tol: 1e-4, random_seed: nil) ⇒ BaseRBF
constructor
Create a radial basis function network estimator.
Constructor Details
#initialize(hidden_units: 128, gamma: nil, reg_param: 100.0, normalize: false, max_iter: 50, tol: 1e-4, random_seed: nil) ⇒ BaseRBF
Create a radial basis function network estimator.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
# File 'rumale-neural_network/lib/rumale/neural_network/base_rbf.rb', line 24 def initialize(hidden_units: 128, gamma: nil, reg_param: 100.0, normalize: false, max_iter: 50, tol: 1e-4, random_seed: nil) super() @params = { hidden_units: hidden_units, gamma: gamma, reg_param: reg_param, normalize: normalize, max_iter: max_iter, tol: tol, random_seed: random_seed || srand } @rng = Random.new(@params[:random_seed]) end |