Class: Rumale::Tree::ExtraTreeClassifier
- Inherits:
- 
      DecisionTreeClassifier
      
        - Object
- Base::Estimator
- BaseDecisionTree
- DecisionTreeClassifier
- Rumale::Tree::ExtraTreeClassifier
 
- Defined in:
- rumale-tree/lib/rumale/tree/extra_tree_classifier.rb
Overview
ExtraTreeClassifier is a class that implements extra randomized tree for classification.
Reference
- 
Geurts, P., Ernst, D., and Wehenkel, L., “Extremely randomized trees,” Machine Learning, vol. 63 (1), pp. 3–42, 2006. 
Instance Attribute Summary collapse
- 
  
    
      #classes  ⇒ Numo::Int32 
    
    
  
  
  
  
    
      readonly
    
    
  
  
  
  
  
  
    Return the class labels. 
- 
  
    
      #feature_importances  ⇒ Numo::DFloat 
    
    
  
  
  
  
    
      readonly
    
    
  
  
  
  
  
  
    Return the importance for each feature. 
- 
  
    
      #leaf_labels  ⇒ Numo::Int32 
    
    
  
  
  
  
    
      readonly
    
    
  
  
  
  
  
  
    Return the labels assigned each leaf. 
- 
  
    
      #rng  ⇒ Random 
    
    
  
  
  
  
    
      readonly
    
    
  
  
  
  
  
  
    Return the random generator for random selection of feature index. 
- 
  
    
      #tree  ⇒ Node 
    
    
  
  
  
  
    
      readonly
    
    
  
  
  
  
  
  
    Return the learned tree. 
Attributes inherited from Base::Estimator
Instance Method Summary collapse
- 
  
    
      #initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil)  ⇒ ExtraTreeClassifier 
    
    
  
  
  
    constructor
  
  
  
  
  
  
  
    Create a new classifier with extra randomized tree algorithm. 
Methods inherited from DecisionTreeClassifier
#fit, #predict, #predict_proba
Methods included from Base::Classifier
Methods inherited from BaseDecisionTree
Constructor Details
#initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ ExtraTreeClassifier
Create a new classifier with extra randomized tree algorithm.
| 53 54 55 56 | # File 'rumale-tree/lib/rumale/tree/extra_tree_classifier.rb', line 53 def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) super end | 
Instance Attribute Details
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
| 23 24 25 | # File 'rumale-tree/lib/rumale/tree/extra_tree_classifier.rb', line 23 def classes @classes end | 
#feature_importances ⇒ Numo::DFloat (readonly)
Return the importance for each feature.
| 27 28 29 | # File 'rumale-tree/lib/rumale/tree/extra_tree_classifier.rb', line 27 def feature_importances @feature_importances end | 
#leaf_labels ⇒ Numo::Int32 (readonly)
Return the labels assigned each leaf.
| 39 40 41 | # File 'rumale-tree/lib/rumale/tree/extra_tree_classifier.rb', line 39 def leaf_labels @leaf_labels end | 
#rng ⇒ Random (readonly)
Return the random generator for random selection of feature index.
| 35 36 37 | # File 'rumale-tree/lib/rumale/tree/extra_tree_classifier.rb', line 35 def rng @rng end | 
#tree ⇒ Node (readonly)
Return the learned tree.
| 31 32 33 | # File 'rumale-tree/lib/rumale/tree/extra_tree_classifier.rb', line 31 def tree @tree end |