Class: Rumale::Tree::VRTreeClassifier
- Inherits:
-
DecisionTreeClassifier
- Object
- Base::Estimator
- BaseDecisionTree
- DecisionTreeClassifier
- Rumale::Tree::VRTreeClassifier
- Defined in:
- rumale-tree/lib/rumale/tree/vr_tree_classifier.rb
Overview
VRTreeClassifier is a class that implements Variable-Random (VR) tree for classification.
Reference
-
Liu, F. T., Ting, K. M., Yu, Y., and Zhou, Z. H., “Spectrum of Variable-Random Trees,” Journal of Artificial Intelligence Research, vol. 32, pp. 355–384, 2008.
Instance Attribute Summary collapse
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#feature_importances ⇒ Numo::DFloat
readonly
Return the importance for each feature.
-
#leaf_labels ⇒ Numo::Int32
readonly
Return the labels assigned each leaf.
-
#rng ⇒ Random
readonly
Return the random generator for random selection of feature index.
-
#tree ⇒ Node
readonly
Return the learned tree.
Attributes inherited from Base::Estimator
Instance Method Summary collapse
-
#initialize(criterion: 'gini', alpha: 0.5, max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ VRTreeClassifier
constructor
Create a new classifier with variable-random tree algorithm.
Methods inherited from DecisionTreeClassifier
#fit, #predict, #predict_proba
Methods included from Base::Classifier
Methods inherited from BaseDecisionTree
Constructor Details
#initialize(criterion: 'gini', alpha: 0.5, max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ VRTreeClassifier
Create a new classifier with variable-random tree algorithm.
55 56 57 58 59 60 |
# File 'rumale-tree/lib/rumale/tree/vr_tree_classifier.rb', line 55 def initialize(criterion: 'gini', alpha: 0.5, max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) super(criterion: criterion, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, max_features: max_features, random_seed: random_seed) @params[:alpha] = alpha.clamp(0.0, 1.0) end |
Instance Attribute Details
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
23 24 25 |
# File 'rumale-tree/lib/rumale/tree/vr_tree_classifier.rb', line 23 def classes @classes end |
#feature_importances ⇒ Numo::DFloat (readonly)
Return the importance for each feature.
27 28 29 |
# File 'rumale-tree/lib/rumale/tree/vr_tree_classifier.rb', line 27 def feature_importances @feature_importances end |
#leaf_labels ⇒ Numo::Int32 (readonly)
Return the labels assigned each leaf.
39 40 41 |
# File 'rumale-tree/lib/rumale/tree/vr_tree_classifier.rb', line 39 def leaf_labels @leaf_labels end |
#rng ⇒ Random (readonly)
Return the random generator for random selection of feature index.
35 36 37 |
# File 'rumale-tree/lib/rumale/tree/vr_tree_classifier.rb', line 35 def rng @rng end |
#tree ⇒ Node (readonly)
Return the learned tree.
31 32 33 |
# File 'rumale-tree/lib/rumale/tree/vr_tree_classifier.rb', line 31 def tree @tree end |